
NASA/TM—2013–216602	

	

Dual Level Parallel Computations for Large-
Scale High-Fidelity Database to Design
Aerospace Vehicles

	
 	
 	
 	
 	

	

Guru P. Guruswamy
Ames Research Center, Moffett Field, California

	

	

	

	

	

	

	

	

	

	

 September	
 2013	

	

NASA STI Program ... in Profile
	

	

Since its founding, NASA has been dedicated
to the advancement of aeronautics and space
science. The NASA scientific and technical
information (STI) program plays a key part in
helping NASA maintain this important role.

The NASA STI program operates under the
auspices of the Agency Chief Information Officer.
It collects, organizes, provides for archiving, and
disseminates NASA’s STI. The NASA STI
program provides access to the NASA
Aeronautics and Space Database and its public
interface, the NASA Technical Reports Server,
thus providing one of the largest collections of
aeronautical and space science STI in the world.
Results are published in both non-NASA channels
and by NASA in the NASA STI Report Series,
which includes the following report types:

• TECHNICAL PUBLICATION. Reports of

completed research or a major significant
phase of research that present the results of
NASA Programs and include extensive data
or theoretical analysis. Includes compila-
tions of significant scientific and technical
data and information deemed to be of
continuing reference value. NASA counter-
part of peer-reviewed formal professional
papers but has less stringent limitations on
manuscript length and extent of graphic
presentations.

• TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest,
e.g., quick release reports, working
papers, and bibliographies that contain
minimal annotation. Does not contain
extensive analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION.
Collected papers from scientific and
technical conferences, symposia, seminars,
or other meetings sponsored or
co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

• TECHNICAL TRANSLATION.
English-language translations of foreign
scientific and technical material pertinent to
NASA’s mission.

Specialized services also include organizing
and publishing research results, distributing
specialized research announcements and
feeds, providing information desk and personal
search support, and enabling data exchange
services.

For more information about the NASA STI
program, see the following:

• Access the NASA STI program home page

at http://www.sti.nasa.gov

• E-mail your question to help@sti.nasa.gov

• Fax your question to the NASA STI
Information Desk at 443-757-5803

• Phone the NASA STI Information Desk at
443-757-5802

• Write to:
STI Information Desk
NASA Center for AeroSpace Information
7115 Standard Drive
Hanover, MD 21076-1320

.	
 	

	

NASA/TM—2013–216602	

	

Dual Level Parallel Computations for Large-
Scale High-Fidelity Database to Design
Aerospace Vehicles

	
 	
 	
 	
 	

	

Guru P. Guruswamy
Ames Research Center, Moffett Field, California

	

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, CA 94035-1000

September	
 2013	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

 Click here: Press F1 key (Windows) or Help key (Mac) for help
	

Available	
 from:	

	

	

	

	

	

	

	

	

 Click here: Press F1 key (Windows) or Help key (Mac) for help
This	
 report	
 is	
 also	
 available	
 in	
 electronic	
 form	
 at	

http://www.nas.nasa.gov/publications/reports/reports.html

NASA	
 Center	
 for	
 AeroSpace	
 Information	

7115	
 Standard	
 Drive	

Hanover,	
 MD	
 21076-­‐1320	

443-­‐757-­‐5802	

1	

	

Summary

 A dual-level parallel procedure is presented for computing large databases to support
aerospace vehicle design. This procedure has been developed as a single Unix script within the
Parallel Batch Submission environment utilizing MPIexec and runs MPI based analysis software.
It has been developed to provide a process for aerospace designers to generate data for large
numbers of cases with the highest possible fidelity and reasonable wall clock time. A single job
submission environment has been created to avoid keeping track of multiple jobs and the
associated system administration overhead. The process has been demonstrated for computing
large databases for the design of typical aerospace configurations, a launch vehicle and a
rotorcraft.

Introduction

 Design of aerospace vehicle configurations involves a large number of computations with
varying parameters. For example, designing launch vehicles to fly safely through the transonic
regime requires thousands of computations at different Mach numbers, angles of attack,
frequencies, and structural modes [1]. Safe design of rotorcraft, typically dominated by flow
complexities and non-linear structural behaviors, requires a large number of computations with
different flight scenarios [2, 3].

 Currently, low-fidelity models are in use to cope with the requirement of rapid turn-around
time needed in the design process [4]. For launch vehicles, low-fidelity linear-aerodynamic
theory, such as the vortex lattice method for subsonic flows and Mach box theory for supersonic
flows are used. In order to accurately model moving shock-waves and flow separations, high
fidelity equations, such as those based on the Navier-Stokes equations for aerodynamics [5] and
the non-linear structural dynamics equations for structures [6], are needed. Numerical solution of
these high fidelity equations is computationally expensive. For example, given the same
structural complexity, the ratio of computational time required for Navier-Stokes-based
computations to linear aerodynamics computations for a flexible rectangular wing is about 2000
to 1 [7]. This ratio can significantly increase with increasing geometric complexity. Similar
massive computations are required in designing launch vehicle structures [8].

 In general, engineering design requires solutions for a large number of computationally
intensive cases. Typically, the design process is a time-critical series of events, and timely
generation of data plays a crucial factor [4]. Therefore, fast computations with reasonable turn
around time are essential for the design process.

 Cluster computers [9] have facilitated the fast turn around times needed by design engineers.
Most high fidelity single-case computations [10] employ message passing interface (MPI) [11].
However, in order to make high-fidelity-based computations practical for design, a procedure
that can generate data for a large number of cases in the least amount of time is needed. Some of
the earlier efforts to run multiple cases such as AeroDB [12] and GNUparallel [13] were focused
on submitting the multiple jobs (one for each case) on multiple computers. The number of cases
was limited by the total number of batch jobs allowed on a particular computer. These tools had
the ability to monitor jobs remotely, but the input parameters were limited to flow quantities such

2	

as Mach number and angle of attack [12]. In addition they depended on net-work performance
for fast turn-around time.

 Recently, a procedure based on MPIexec [14] which ran multiple cases in a single job on a
single image cluster was presented in Ref. [15]. In addition to flow parameters the procedure in
Ref. 15 allowed variations of geometry-dependent parameters such as structural mode shapes.
MPIExec was used to initialize a parallel job within a Parallel Batch Submission (PBS)
environment [16]. MPIexec uses the task manager library of PBS to spawn copies of the
executable on the nodes in a PBS allocation. In Ref .15 the focus was to run maximum number
cases simultaneously in a single PBS job environment. The number of cases are independent of
the maximum number of jobs allowed on the system. Reference 15 demonstrated generation of a
1000-case design database within 135 minutes of wall clock time for a launch vehicle by using
the Navier-Stokes equations. Cases considered involved variations in Mach number, angle of
attack and structural mode shape. This procedure does not incur system overhead associated with
the starting and closing multiple jobs like the procedures presented in Refs. 12 and 13.

 Reference 15 did not use MPI. In this paper, the Ref. 15 approach is further extended to
accommodate increased complexity of the individual cases using MPI-based analysis software.
The process is demonstrated by generating data for two aerospace configurations, a launch
vehicle and a rotorcraft. Parametric studies that not only vary flow parameters but also include
variations in structural mode shapes and frequencies are performed. Running multiple cases in a
single job environment will facilitate communications directly between two cases when needed.

Approach

 An important step in the engineering design is an iterative process that involves computations
of a repetitive nature for varying input parameters. These computations take the same amount of
time for each case. For example, to design a launch vehicle; a large database is required for a
given range of Mach numbers, angles of attack, structural frequencies and modes [17]. It is
assumed that all cases are numerically similar and take the same amount of time.

 In general, the database generation process for design can be expressed as a multidimensional
matrix assigning indices for each parameter. As an example, for the case of a launch vehicle i, j,
and k represent Mach number (M), angle of attack (α), and mode shape(Φ), respectively. The
total normal force on a launch vehicle at the ith M, the jth α and the kth mode is represented by
CNijk.

 In this work a run matrix for design data will be generated using PBS with many simultaneous
executions of MPI based analysis software. This involves building logic in the PBS script to
fetch the appropriate inputs. Using matrix representation of the database needs multiple loops in
the script, which can introduce overhead. As a result, a contiguous representation of data is used.
The element e in contiguous representation corresponding to an element in matrix is defined [18]
as

 (1)

e = ! p! ! ! d!

!

!!!!!

!
!

!!!

	

3	

where n is the number of dimensions, dq is the size of qth dimension, pr position in the matrix
corresponding to rth dimension. The second large symbol above is an upper-case Greek letter pi.
It indicates the product of many factors in the same way that an upper-case sigma indicates the
sum of many terms. Pi stands for "product," sigma for "sum." For example in a three dimensional
matrix case (n = 3) of size 8 x 10 x 6 (d1 = 8, d2 = 10 d3 = 6), the element at position <p1 =2, p2 =
4, p3 = 1> results in an index in contiguous representation e = 2x(10x6) + 4x6 + 1x1 = 145.
Equation 1 is used in PBS scripts to fetch appropriate data from disk.

 In the design of an aerospace vehicle the use of an aerodynamic influence coefficient matrix
(AIC) [19] is very common. The AIC matrix [A] represents the changes in the aerodynamic
loads due to perturbations of structural deformations. Deformations are represented in the form
of modes [20]. Aij represents the modal force on the ith mode due to structural perturbation in the
jth mode. This allows the designer to compute the loads needed for any deformation in the design
process using
 {d} = [Φ]{h} (2)

where {d} represents displacements, [Φ] is the modal matrix and h represents generalized
displacements.

The modal force vector can be computed using

 }]{[}{ hAF = . (3)

 Now the rest of the challenge lies in computing [A] for various parameters. Based on low-
fidelity methods, computing [A] is well automated in codes such as NASTRAN [21]. However
the accurate analysis for design of aerospace vehicles needs high fidelity Navier-Stokes flow
equations. In this effort the OVERFLOW [22] code is used to solve the Navier Stokes equations.

 In order to accomplish fast generation of data using high fidelity equations, a script that uses
MPIexec with MPI based parallel codes has been developed. In this script, a certain number of
cores are dedicated to each case to facilitate use of MPI. The number of cores assigned to each
case is termed as rank count (RC). All cases are run in parallel using the MPIexec utility.

 The above procedure has been implemented on the Pleiades super cluster that has Hapertown
(HAR), Nehlam (NEH), Westmere (WES) and Sandy Bridge (SAN) nodes [23]. The maximum
number of cores permissible and associated memory are given in Table 1. Since both HAR and
NEH have 8 cores, only HAR is selected in this study.

 Table 1: Nodes on Pleiades Supercluster
Node Cores Memory/Node Speed in GHz
Harpertown 8 8GB 3.00
Nehalem 8 3GB 2.93
Westmere 12 24GB 2.93
Sandy-Bridge 16 32GB 2.6

4	

 Present approach is aimed towards generating [A] of Eqn. (3). For this a given configuration is
represented by several modes. The effects of modal perturbations are independently computed.
By using a linear combination of modal loads, aerodynamic forces for any arbitrary displacement
can then be computed using Eq. (2). The following approach is taken to compute the AIC matrix
using CFD code:

1. For a given configuration a suitable CFD grid is generated.
2. Using an algebraic approach, deformations due to mode shapes are superimposed on the

base grid of the rigid configuration.
3. Inputs for different cases with varying angles of attack (AOA), Mach numbers,

frequencies and modes are generated based on user specifications. It is assumed number
of iterations specified is adequate for convergence for all cases.

4. Data is spawned to different directories that are contiguously numbered.
5. All cases are computed running each case on a different group of cores using ‘Rank’

identification.
6. Wait till all jobs are complete. Successful completion of all jobs can be tracked by

monitoring the size of the residual files. Once PBS job is successfully competed all
residual files will be of the same size. It is assumed that user has selected appropriate
parameters such that results converge at the end of the job completion.

7. After all jobs are successfully completed, [A] matrix is assembled.

Fig.1 A flow chart of dual level parallel Fig 2 The script for the core of the RUNDUA
process RUNDUA for 25 case run with RC =16.

	

	

5	

 A flowchart of the above process called RUNDUA, based on a single Unix script in the PBS
environment is shown in Fig. 1. The main script for the RUNDUA is given in Fig. 2.
PBS_NODEFILE is the name of the file that contains the list of the nodes assigned to the job.
CASE${i} is the directory assigned for ith case and ‘overrunmpi’ is a special script to that
executes the OVERFLOW [22] code.

Demonstrations

 The RUNDUA script is demonstrated for National Launch System (NLS) [24] and HART II
rotorcraft [25]. Flow computations are made using the overset-grid based OVERFLOW code that
solves the Navier-Stokes equations. Previously validated grids are used in this work. Structural
flexibilities of configurations are modeled using mode shapes.

Demonstration for Launch Vehicle

 A schematic diagram of the NLS configuration [24] is shown in Fig. 3. The grid selected for
this configuration has 151, 121 and 50 points in the axial, circumferential and radial directions,
respectively. This gird was used in Ref. 15 where the computed results were compared with
experiment.

 Fig. 3 National Launch System (NLS).

 Computations are made for 1,000 cases involving 20 Mach numbers (M∞) ranging from 0.75
to 1.225, and 10 angles of attack (α) ranging from 0.0 to 4.5 degrees, and 5 modes (1 rigid and 4
flexible modes). Figure 4 shows the distribution of pressure coefficient cp for the first bending
mode at M∞ = 0.90 and α = 0.0 deg.

 First the performance of the HAR, WES and SAN nodes are studied for a single case. Each
case is run for 2000 time steps as required for a converged solution on the deformed
configuration [15]. Figure 5 shows the wall clock time in microsecs required per step per grid
point. Computations are made using RC of 1, 4 and 8 for a HAR node. Then it is switched to a
WES node for RC = 12, followed by a SAN node for RC =16.

6	

 On the HAR node, computations speed-up by a factor of about 3 for the increase in RC from
1 to 4 and by a factor of about 2 when RC increases from 4 to 8. Switching to RC = 12 on
WES gives another speed-up of 1.5. Finally a factor of 1.25 speed-up is obtained for RC = 16 on
the SAN node. The rate of gain in the speed is significantly reduced after RC = 4. This can be
attributed to the small grid size used in this specific demonstration case. However solutions using
small grids are needed in the preliminary design stage that requires large number of cases.

 The focus of this paper is to generate data for maximum number of cases with the highest
possible fidelity within a reasonable turn around time. To obtain a one day turn around, a
request for a total number of cores of about 4000 or less is feasible for the Pleiades super cluster
[15, 22]. From Fig. 5 it is seen that the rate of improvement in speed decreases significantly
after RC = 4. Therefore for this case RC = 4 is used for the rest of the computations. Results are
demonstrated using the HAR node. Each node will run 2 cases without wasting cores since RC =
4 is a factor of number of cores in the HAR node.

Fig. 4 Cp contours at M∞ = 0.90, α = 0.0 deg. Fig. 5 Performance on different nodes

 Changes in M∞ and α are made in input for OVERFLOW and changes in mode shapes are
built into the grid. ‘inputij‘ represents input for ith Mach number and jth angle of attack. ‘gridk‘
represents the grid for the kth

 mode. The case number in a contiguous numbering scheme
required for RUNDUA is computed using Eq. (1) by setting n = 3 and replacing p1, p2 and p3 by i
j and k respectively. For this case the values of d1, d2 and d3 in Eq. (1) are 20, 10 and 5,
respectively.

 Single job runs are made using RUNDUA in increments of 100 cases up to 1000. On each
node a case is run for 2000 steps. Number of steps required for computations is determined based
on the convergence of the axial force corresponding to the second bending mode. For example
at M∞ = 0.90 and α = 2.5 degrees the axial force changed less than 0.1 percent from 1900 to
2000 steps.

	

	

7	

 A stand alone case using 4 cores required 27 minutes of wall clock time. From run to run, the
number of angles of attack are increased from 1 to 10. Figure 6 shows a plot of the percentage
increase of wall clock time with respect to the wall clock time required to run a single case. The
increase is gradual and reaches 15% for 1000 cases using a wall clock time of 31 minutes. This
increase is attributed to internal system time in grouping the cores with the increase in number of
cases. Even with a 15% increase in wall clock time, 1000 cases can be completed in a
reasonable time. Similar computations without using MPI required a wall clock time of 135
minutes as reported in Ref. 13. The conventional approach of submitting multiple PBS jobs will
have over head associated with start and ending jobs that user does not keep track of it.

 The results from 1,000 cases are summarized in Fig. 7. Plots of normal (side) force as a
function of M∞ and α are shown for the rigid case and the first 4 flexible modes. All modes have
significant influence on the normal forces. The effect is more pronounced near M∞ = 1.0. The
rate of change in normal force near transonic Mach numbers is more pronounced for higher
modes. Data from such plots are used in designing launch vehicles.

 To compare with conventional approaches an attempt was made to run 1000 individual cases
similar to that in Ref. 12 as 1000 separate PBS jobs. However, system restrictions on Pleiades
[23] did not allow more than 300 PBS jobs.

Fig. 6 Percentage increase in wall clock time of PBS jobs compared to a PBS job with single
case for NLS configuration using rank count 4 on HAR node.

Rotorcraft (HART-II)

 For the next demonstration, computations are performed for the HART-II rotorcraft model
[25] shown in Fig. 8. Blades are 2 meters long with 0.121m chord and consist of NACA 23012
airfoil sections. Each blade has a built-in linear twist of -8 deg and a square tip. The detailed
structured grid for the OVERFLOW code was generated by Doug Boyd of NASA Langley [5].
Based on that grid, time accurate aeroelastic computations were made with 40 million grid points
[3]. The solution required about 30 hrs of wall clock time with 1024 Harpertown cores for 4
revolutions. In this paper, computations are made for the blade-system without the body. Blade
grids from the original grid [5] are used.

	

8	

Fig.7 Design database for Launch Vehicle, normal force coefficient versus Mach number M∞ and
angle of attack α.

 Unlike in Ref. 3 where the focus was on detailed computations for a single case, in this effort
the focus is to generate data for a large number of cases.

 In order to understand flight conditions that may lead to dynamic instabilities, it is necessary
to compute flutter boundaries of rotorcraft [26]. Computation of flutter boundaries that involves
solving Eigen value equations needs a large database involving different rotating speeds, modes,
and frequencies. Recently, a procedure to use Navier-Stokes-based aerodynamic data for
computing flutter speeds associated with a single isolated rotorcraft blade was presented in Ref.
27. Using MPIexec-based, single-level parallel computations it was demonstrated that a flutter
boundary needing data for 10 rotating speeds, 2 modes and 5 frequencies can be computed
within about 25 hrs of wall clock time using 100 cores on the Pleiades super cluster. The grid
used in that study consisted of 1.8M grid points. In this paper the previously introduced
RUNDUA will be demonstrated to compute data for flutter computations for a 4 bladed-system.

 Based on the grid from Ref. 5, the total grid size needed for four bladed rotor system is 20
million grid points. In order to test the adequacy of the grid, computations were made for base
line conditions [25] (forward speed 200 ft /sec) using the aeroelastic deformations computed in
Ref. 3. The solution required 3 revolutions with 3600 time steps per revolution for results to
reach a periodic motion. Resulting integrated air loads compared well with the experiment [25]
similar to that reported in Ref. 3. Figure 9 shows a plot of surface pressures on the blades.
Figure 10 shows a snapshot of vorticity magnitude contours that were generated over 3

	

9	

revolutions. The development of tip-vortices and blade-wake structure can be seen in Figure 10.
This detailed predictive capability of the Navier-Stokes equations used in the present simulation
helps to generate accurate data for stability computations including the effects of complex flow
phenomena such as blade-vortex interactions, dynamic stall etc.

Fig. 8 HART-II rotorcraft.

 For computing flutter boundaries several flow computations at various rotating speeds, modes
and frequencies are needed with the use of the Navier-Stokes equations. To compute such data, a
fast procedure will be demonstrated using RUNDUA.

Fig. 9 Snap shot of surface pressures on

Fig. 10 A plot of vorticity-magnitude for blade-system of HART II.

	

	

10	

 Since the grid is larger than that for the launch vehicle case, the SAN node that allows a
maximum RC of 16 per node is selected. The value of RC required is determined based on
computations for a PBS job with single case. Figure 11 shows a plot of wall clock time needed
per grid point per step. There is a continuous improvement in speed from RC = 1 to 40. It was
decided to use RC = 32 (a multiple 16 corresponding to number of cores on SAN) for further
computations to keep the wall clock time around 15 hrs. The RC value is selected as a multiple
of 16 to avoid splitting of the node between cases, which adds communication overhead. A
single 100-case PBS job is possible assuming a request for 3200 cores is feasible for less than
one-day turn-around time.

 Input data for 10 rotating speeds ranging from 55 to 95 radians/sec and 2 modes with 5
frequencies are prepared. The changes in rotating speed are made in the input for OVERFLOW.
The changes in frequencies for different modes are made through an external input data called
the ‘motion file’ of the OVERFLOW code [27]. Figure 12 shows a plot of tip responses to the 5
torsional frequencies considered.

Fig. 11 Effect of rank count on wall clock time for HART-II on SAN nodes.

 Unsteady 100-case computations are performed for three rotations with 3600 steps per
revolution when responses reached a periodic motion. A wall clock time of 23.15 hrs was
required to complete all 100 cases, which is 1% above that required to run a single case.

 Fourier transformations of force outputs from OVERFLOW are performed to extract data
useful for flutter computations [27]. This process is built into RUNDUA using an Unix script
and FORTRAN post processing modules (see Appendix A). Use of Eq. (1) is embedded I the
script. Figure 13 shows plots of sectional lift magnitude at 20, 40, 60 and 80 percentage of the
blade radius for varying rotational speeds and 5 torsional modes. Similar plots can be extracted
for other aerodynamic quantities such as moments. Quantities from these plots can be used as
input into the AIC matrix [A] of Eq.(8) in Ref. 27 to compute flutter speed.

11	

Fig. 12 Tip twist responses of HART II blades associated with 5 frequencies.

 In order to compare the turn around time between the present single job environment and the
multiple job environment used elsewhere, computations were made for HART-II by submitting
one job for each case. The present approach took 5% less turn-around time. However, the turn
around time is susceptible to system load and job priorities, which could vary. Therefore, turn-
around time can be used as a secondary guideline but not as the prime criteria to judge the
efficiency of the process.

Fig. 13 Effect of rotating speed and torsional frequency on predicted sectional lift.

	

Ratio of Torisional to
Rotating

	

12	

Conclusions

 A dual-level parallel procedure has been developed for computing large databases to support
aerospace vehicle design. The procedure has been developed as a single Unix script in the
Parallel Batch Submission environment by utilizing MPIexec to run MPI-based analysis
software. The procedure provides a single-job submission environment for the user and caters to
the needs of aerospace design engineers who need to run a large number of cases using software
based on high fidelity methods. Results have been demonstrated for two typical aerospace
configurations, a launch vehicle and a rotorcraft. Using a moderate size grid of about 1 million
points, it has been demonstrated that 1000 cases can be run within about half an hour of wall
clock time to generate preliminary design data for a launch vehicle. For a 4-bladed rotorcraft
system using about 20 million grid points, it has been demonstrated that 100 cases can be run
within about 15 hrs of wall clock time. For both cases, it was assumed that a request of 4000
cores was feasible to guarantee less than a one-day turn-around. A demonstration case showed
that turn around time of this approach was similar to that of submitting many individual jobs but
does not involve overhead of system tasks associated with the start and end of multiple jobs. The
number of cases that can be run at a time is not limited in the present approach. Unlike previous
approaches this single-job environment approach was suitable for extending to three-level
parallel computations that include direct MPI communications among different application
codes.

Acknowledgements

 The author thanks David Barker and Johnny Chang of NASA Advanced Supercomputer
Division of Ames Research Center for providing valuable suggestions in developing the script.

References

1) Balesdent,	
 M.,	
 Bérend,	
 N.,	
 Dépincé,	
 P.	
 and	
 Chriette,	
 A.,	
 “A	
 Survey	
 of	
 Multidisciplinary	

Design	
 Optimization	
 Methods	
 in	
 Launch	
 Vehicle	
 Design,”	
 J.	
 of	
 Structural	
 and	

Multidisciplinary	
 Optimization,	
 Vol.	
 45,	
 Issue	
 5,	
 May	
 2012,	
 pp.	
 619-­‐642.	

2) Nash,	
 J.	
 “Performance	
 Optimization	
 of	
 Helicopter	
 Rotor	
 Blades,”	
 NASA	
 TM	
 1040594,	

April	
 1991.	

3) Guruswamy,	
 G.	
 P.,	
 “Fluid/Structure	
 Interaction	
 Modeling	
 of	
 Helicopters	
 Using	
 the	

Navier-­‐Stokes	
 equations,”	
 AIAA	
 2012-­‐4789,	
 AIAA	
 Modeling	
 and	
 Simulation	

Technologies	
 Conf.,	
 Minneapolis,	
 MN,	
 August	
 2012.	
 	

4) Holleis,	
 P.	
 and	
 Schmidt,	
 A.,	
 “MAKEIT:	
 Integrate	
 User	
 Interaction	
 Times	
 in	
 the	
 Design	

Process	
 of	
 Mobile	
 Applications,”	
 Pervasive	
 2008,	
 LNCS	
 5013,	
 2008,	
 pp.	
 56–74.	
 	

[http://www.pervasive2008.org]	

5) Boyd,	
 D.	
 D.,	
 “HART-­‐II	
 Acoustic	
 Predictions	
 using	
 a	
 Coupled	
 CFD/CSD	
 method,”	

American	
 Helicopter	
 Society	
 65th	
 Annual	
 Forum,	
 May	
 2009,	
 Grapevine,	
 Texas.	

6) Annet	
 M.	
 S.,	
 Polanco	
 M.	
 A.,	
 “System-­‐Integrated	
 Finite	
 Element	
 Analysis	
 of	
 a	
 Full-­‐Scale	

Helicopter	
 Crash	
 Test	
 with	
 Deployable	
 Energy	
 Absorbers,”	
 American	
 Helicopter	

Society,	
 66th	
 Annual	
 Forum,	
 Phoenix,	
 AZ,	
 May	
 2010.	

	

13	

7) Byun,	
 C.,	
 Farhangnia,	
 M.	
 and	
 Guruswamy,	
 G.	
 P.,	
 “Aerodynamic	
 Influence	
 Coefficient	

Computations	
 Using	
 Euler/Navier-­‐Stokes	
 Equations	
 on	
 Parallel	
 Computers,”	
 AIAA	
 J.,	

Nov.	
 1999,	
 Vol.	
 37,	
 No.	
 11,	
 pp.	
 1393-­‐1400.	

8) Uhrig,	
 G.	
 and	
 Boury,	
 D.,	
 “Large	
 Space	
 Solid	
 Rocket	
 Motors	
 in	
 Europe	
 –	
 Past	
 and	

Furure	
 Development,”AIAA-­‐98-­‐3980,	
 34th	
 AIAA/ASME/SAE/ASEE	
 Joint	
 Propulsion	

Conf	
 &	
 Exhibit,	
 Cleveland,	
 OH,	
 July	
 1998.	

9) Buyya,	
 R.	
 “High	
 Performance	
 Cluster	
 Computing:	
 Architectures	
 and	
 Systems,”	
 Vol.	
 1,	

ISBN	
 0-­‐13-­‐013784-­‐7,	
 and	
 Vol.	
 2,	
 ISBN	
 0-­‐13-­‐013785-­‐5,	
 Prentice	
 Hall,	
 NJ,	
 USA,	
 1999.	

10) Jespersen,	
 D.	
 C.,	
 Pulliam,	
 T.	
 and	
 Buning,	
 P.G.,	
 “Recent	
 Enhancements	
 to	
 OVERFLOW,”	

AIAA	
 Paper	
 97-­‐0644,	
 Jan.	
 1997.	

11) “Message	
 Passing	
 Interface,	
 MPI,”	
 A	
 Message-­‐Passing	
 Interface	
 Standard,	
 University	

of	
 Tennessee,	
 May	
 1994.	

12) Rogers,	
 S.	
 E.,	
 Aftosmis,	
 M.	
 J.,	
 Pandya	
 S.	
 A.,	
 Pandya,	
 S	
 .A.,	
 	
 Chaderjian	
 N.	
 M.,	
 Tejnil,	
 E.	
 T	
 	

and	
 	
 Ahmad,	
 J.	
 U.,	
 “Automated	
 CFD	
 Parameter	
 Studies	
 on	
 Distributed	
 Parallel	

Computers”	
 AIAA	
 Paper	
 	
 2003-­‐4229,	
 16th	
 AIAA	
 Computational	
 Fluid	
 Dynamics	
 Conf,	
 	

Orlando,	
 FL,	
 June	
 2003.	

13) “GNU	
 Operating	
 System”	
 http://www.gnu.org/software/parallel/	

14) Fineberg,	
 S.,	
 “MPIRUN:	
 A	
 Loader	
 Multidisciplinary	
 and	
 Multizonal	
 MPI,”	
 NASA	

Advanced	
 Supercomputing	
 Division	
 Newsletter,	
 Vol.	
 2,	
 No.	
 6,	
 Nov.–Dec.	
 1994.	

15) Guruswamy,	
 	
 G.	
 P.,“Large-­‐Scale	
 Computations	
 	
 for	
 	
 Stability	
 	
 Analysis	
 	
 of	
 	
 Launch	
 	

Vehicles	
 	
 Using	
 	
 Cluster	
 	
 Computers,”	
 J.	
 of	
 Spacecraft	
 and	
 Rockets,	
 Vol.	
 48,	
 No.	
 4,	
 July-­‐
August	
 2011,	
 pp.	
 584-­‐588.	

16) Stanzione,	
 D.,	
 “LSF/PBS	
 Scripting	
 Nuts	
 and	
 Bolts,”	
 Cluster	
 World,	
 Vol.	
 2,	
 No.	
 7,	
 July	

2004.	

17) Balesdent,	
 M.,	
 Bérend,	
 N.,	
 Dépincé,	
 P.	
 	
 and	
 Chriette,	
 “A	
 survey	
 of	
 multidisciplinary	

design	
 optimization	
 methods	
 in	
 launch	
 vehicle	
 design,”	
 Structural	
 and	

Multidisciplinary	
 Optimization,	
 Vol.	
 45,	
 No.	
 	
 5,	
 2012,	
 pp.	
 619-­‐642.	

18) Drake,	
 P.,	
 “Data	
 Structures	
 and	
 Algorithms	
 in	
 	
 Java,”	
 	
 Pearson	
 Prentice	
 Hall	
 Pearson	

Education,	
 Inc.,	
 Upper	
 Saddle	
 River,	
 New	
 Jersey	
 07458,	
 2004	
 (section	
 12.3,	
 pp.	
 337-­‐
338).	

19) Appa,	
 K.	
 and	
 Somashekar,	
 B.	
 R.,	
 “Application	
 of	
 Matrix	
 Displacement	
 Method	
 in	

Study	
 of	
 Panel	
 Flutter,”	
 AIAA	
 J.,	
 Vol.	
 7,	
 No.	
 1,	
 1969,	
 pp.	
 672-­‐675.	

20) Dugundji,	
 J.,	
 “On	
 the	
 Calculation	
 of	
 Natural	
 Modes	
 of	
 Free-­‐Free	
 Structures,”	
 J.	
 of	
 Aero-­‐
Space	
 Science,	
 Vol.	
 28,	
 No.	
 2,	
 Feb.	
 1961,	
 pp.	
 164-­‐165.	

21) “NASTRAN	
 User’s	
 Manual,”	
 NASA	
 SP-­‐222	
 (08),	
 June	
 1986.	

22) Nichols,	
 R.	
 H.,	
 Tramel	
 R.	
 W.	
 and	
 Buning	
 P.	
 G.,	
 “Solver	
 and	
 Turbulence	
 Model	

Upgrades	
 to	
 OVERFLOW2	
 for	
 Unsteady	
 and	
 High-­‐Speed	
 Applications,”	
 AIAA-­‐2006-­‐
2824,	
 AIAA	
 36th	
 Fluid	
 Dynamics	
 Conference,	
 San	
 Francisco,	
 CA,	
 June	
 2006.	
 	

23) http://www.nas.nasa.gov/hecc/resources/pleiades.html	
 (date	
 accessed	
 Dec	
 17th,	

2012).	

24) Springer,	
 A.	
 M.	
 and	
 Pokora,	
 D.	
 C.,	
 “Aerodynamic	
 Characteristics	
 of	
 the	
 National	

Launch	
 System	
 (NLS)	
 11/2	
 Stage	
 Launch	
 Vehicle,”	
 NASA	
 TP	
 3488,	
 May	
 1994.	

25) Van	
 der	
 Walla,	
 B.	
 G,	
 Burleyb,	
 C.	
 L.,	
 Yuc,	
 Y.,	
 Richard,	
 H.,	
 	
 Pengele,	
 K.	
 and	
 	
 Beaumierf,	
 P.,	

“The	
 HART	
 II	
 Test–Measurement	
 of	
 Helicopter	
 Rotor	
 Wakes,”	
 Aerospace	
 Science	
 and	

Technology,	
 Vol.	
 8,	
 Issue	
 4,	
 June	
 2004,	
 pp.	
 273-­‐284.	

14	

26) Johnston,	
 R.	
 A,	
 “Rotor	
 Stability	
 Prediction	
 and	
 Correlation	
 with	
 Model	
 and	
 Full-­‐Scale	

Tests,”	
 J.	
 of	
 the	
 American	
 Helicopter	
 Society,	
 Vol.	
 21,	
 No.	
 2,	
 April	
 1976,	
 pp.	
 20-­‐30.	

27) Guruswamy,	
 G.	
 P.,	
 “Large	
 Scale	
 Aeroelastic	
 Data	
 for	
 Design	
 of	
 Rotating	
 Blades	
 using	
 	

Navier-­‐Stokes	
 Equations,”	
 AIAA-­‐2012-­‐5715,	
 AIAA	
 14th	
 Multidisciplinary	
 Conf.,	

Indianapolis,	
 IN,	
 Sept.	
 2012.	
 	

APPENDIX-A – List of RUNDUA script as applied to demonstration cases.

#!/bin/csh
#PBS -l select=250:ncpus=16:model=san,walltime=08:00:00
#PBS -W group_list=****
#PBS -q normal
set echo on
module purge
module load comp-intel/2011.7.256
module load mpi-sgi/mpt.2.06r6
cd /nobackupp1/gguruswa/HART2/BLADES/DLEV/EXPORT
rm -r -f CASE*
set MAX_CASES = 099
set n1 = 0
set n2 = 9
set n3 = 0
foreach i (`seq -w 0 $MAX_CASES`)
 mkdir CASE${i}
 cd CASE${i}
 cp ../grid* .
 cp ../mixsur.fmp .
 cp ../xrays* .
 cp ../overrunmpi .
 cp ../overflowmpi .
 cp ../*xml .
 echo "$i $n1 $n3"
 cp ../mode00$n1.txt motion.txt
 cp ../input$n3 test.1.inp
 cd ..
 if($n1 == $n2) then
 set n1 = -1
 @ n3 = $n3 + 1
 else
 endif
 @ n1 = $n1 + 1
 end
 wait
 set RANKS = 40
 setenv F_UFMTENDIAN big

15	

 setenv MPI_MEMMAP_OFF 1
 set FIRST = 1
 set LAST = `expr $FIRST + $RANKS - 1`
 set THE_REAL_PBS_NODEFILE = ${PBS_NODEFILE}
 set spd = 0
 set fre = 0
 foreach i (`seq -w 0 $MAX_CASES`)
 # $i will vary from 001 to 025
 echo $i $FIRST $LAST
 cd CASE${i}
 sed -n "${FIRST},${LAST}p" < ${THE_REAL_PBS_NODEFILE} >
nodefile_group$i
 setenv PBS_NODEFILE nodefile_group$i
 overrunmpi -np 40 test 1&
 set FIRST = `expr $FIRST + $RANKS`
 set LAST = `expr $LAST + $RANKS`
cd ..
end
wait
foreach i (`seq -w 0 $MAX_CASES`)
 cd CASE${i}
 cp rotor_1.onerev.txt ../RESULTS1/forcespdfre
 @ fre = $fre + 1
 if ($fre == $n2) then
 set fre = 0
 @ spd = $spd + 1
 endif
cd ..
end
wait
cd RESULTS1
cp ../*.f .
rm -r -f fouout*
ifort extfor.f
mv a.out forexe
ifort foucom.f
mv a.out fouexe
 set r = 1
 while($r <= 6)
 echo "for rad station = $r"
 set s = 50
 foreach i (0)
 @ s = $s + 5
 set b = 250
 foreach m (0 1 2 3)
 @ b = $b - 25

16	

 cp forceim fort.1
Call FORTRAN module to extract force data
./forexe <<EOF
$r
EOF
 cp fort.13 fourier.inp
#Call FORTRAN module to compute Fourier Coef
./fouexe <<EOF
$b $s
EOF
 echo "im done"
cp fourier.out fououtim$r
 end
 end
wait
@ r = $r + 1
End

